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A B S T R A C T   

A new reduced-complexity, 1-D shoreline model has been developed, calibrated, and tested with a set of 
shoreline positions detected from high-resolution satellite images. Motivated by recent large interannual water 
level fluctuations and associated shoreline changes in the Great Lakes, the model is built on previous models that 
are based on the disequilibrium concept, with extensions for water level effects. Unlike other shoreline models, 
the model includes two different sources of disequilibrium, wave disequilibrium and water level disequilibrium. 
The model also includes a passive flooding term to account for the instantaneous effect of the water level changes 
on the shoreline position. Case studies forced by seasonally-varying waves and water levels varying on seasonal 
and interannual timescales highlight the model’s ability to enhance wave-driven shoreline change when water 
level variations are additionally present. The model was applied to two sites along the Lake Michigan shoreline, 
Jeorse Park and West Beaches, with shoreline time series extracted from multispectral satellite imagery. When 
calibrated and applied to an eleven year period of decreasing water levels, the new model shows significant skill 
in simulating and forecasting the shoreline position in the two study areas, with modest improvement over 
existing models. The simulation results additionally highlight the dominance of water level disequilibrium over 
wave disequilibrium for the study sites. When applied to a nearly forty year simulation of West Beach, the new 
model shows excellent ability to model the shoreline response to water level and wave fluctuations over a range 
of timescales. Comparison models are seen to be incapable of capturing the water level effects, particularly when 
water level trends differ from the calibration period. Overall, the model results and parameters show the 
importance of the newly introduced water level disequilibrium in modulating wave-driven shoreline change. 
Finally, while the shoreline model was motivated by Great Lakes coastal processes, it may provide new predi
cation abilities for coastlines where water level fluctuations and trends play a role in shoreline changes.   

1. Introduction 

Beach geomorphology change is driven by complex hydrodynamic 
processes with a wide range of time scales (Pape et al., 2010; Payo et al., 
2016). Although waves are thought to be the main driver of the changes 
in beach geomorphology at shorter time scales (Davidson et al., 2013; 
Yates et al., 2009), water level fluctuations and trends also play an 
important role in beach reshaping (Alauddin Al Azad et al., 2018; Coco 
et al., 2014; D’anna et al., 2021). On event timescales, storm surge 
communicates wave energy to more erodible portions of the beach, 
enhancing shoreline erosion (Alauddin Al Azad et al., 2018; Coco et al., 
2014). On decadal and longer timescales, sea level rise leads to shoreline 

recession as the beach profile recedes to retain its equilibrium (e.g., the 
Bruun Rule (Bruun, 1962)). 

In the Great Lakes, such as Lake Michigan, water level fluctuations 
play a key role in beach dynamics on both short and long timescales 
(Fig. 1) (Theuerkauf et al., 2019; Thompson and Baedke, 1995). Great 
Lakes water level fluctuations differ in several ways from ocean coasts, 
with important consequences for beach response. On sub-daily to 
weekly timescales, most ocean coastlines experience tidal forcing, and 
this high-frequency shoreline scrubbing creates wider beaches, and 
beaches that are in quasi-equilibrium with a larger range of water levels 
(Friedrichs, 2011; Masselink and Short, 1993). In contrast, the Great 
Lakes have negligible tidal influence, which in turn means that beaches 
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are generally narrower, and more narrowly tuned to the water levels, 
which means that the beach response is more strongly dependent on the 
water level fluctuations that do occur on seasonal and interannual 
timescales. 

On seasonal, interannual, and decadal timescales, the Great Lakes 
experience much larger water level fluctuations than ocean coasts 
(Fig. 1). These fluctuations are driven by hydrologic variations on a wide 
range of timescales (Gronewold and Rood, 2019), and while it has not 
been shown that the Great Lakes water levels are experiencing long-term 
trends analogous to sea level rise, recent work suggests that climate 
change may lead to increased interannual variability in water levels, 
resulting from the tug of war between increasing precipitation and 
increasing evaporation (Gronewold and Rood, 2019). Between 2013 and 
2020, for example, the Lake Michigan-Huron water level went from a 
record low to a record high, with the lake shorelines experiencing a 
water level increase of approximately 2 m over seven years (Fig. 1). This 
water level increase was felt across the Great Lakes, with extensive 
shoreline damage resulting from the rapid increase (Theuerkauf et al., 
2019; Troy et al., 2021). 

In essence it may be argued that Great Lakes coasts are dually 
disadvantaged when it comes to the erosive effect of rising water levels 
on shorelines. Firstly, the magnitudes of longer-term (seasonal scale and 

beyond) water level fluctuations in the Great Lakes are much larger than 
those experienced along ocean coasts. But secondly, the lack of short- 
term water level fluctuations (like tides) in the Great Lakes means that 
the beaches are in equilibrium with only a very small range of water 
levels at any instant in time, in turn making them even more susceptible 
to the large, lower frequency Great Lakes water level variations. It is for 
these reasons that we hypothesize that the water level plays a much 
more important role in Great Lakes beach morphodynamics than for 
ocean coastlines, which is supported by recent observations (Theuerkauf 
et al., 2019; Troy et al., 2021). 

Reduced complexity shoreline position models have been developed 
and applied with success to simulate the cross-shore movement of the 
shoreline in response to wave forcing. These models aim to resolve 
shoreline changes resulting from wave-driven cross-shore sediment 
transport (Davidson et al., 2013; Miller and Dean, 2004; Splinter et al., 
2014; Yates et al., 2009), alongshore sediment transport (Ashton and 
Murray, 2006; Hanson, 1989; Vitousek and Barnard, 2015), or a com
bination of the two mechanisms (Antolínez et al., 2019; Robinet et al., 
2018; Tran and Barthélemy, 2020; Vitousek et al., 2017). Many of the 
modern cross-shore shoreline models are based on the disequilibrium 
concepts introduced by Wright and Short (1984), where the beach 
response to wave forcing at an instant in time is a function of the 

Fig. 1. (a) Monthly water level fluctuations for Lake Michigan and the Atlantic Ocean from 1904 to 2020. (b) Hourly water level fluctuations for Lake Michigan and 
the Atlantic Ocean for the year 2020. Data extracted from NOAA Gages 9087044 and 8518750 for Lake Michigan and the Atlantic Ocean respectively (https://tid 
esandcurrents.noaa.gov/waterlevels). 
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difference, or disequilibrium, from recent beach and/or wave condi
tions. Inherently the dis/equilibrium modeling concept assumes that the 
beach morphology is in equilibrium with recent wave conditions, as 
defined by an appropriate timescale, and stronger deviations from these 
recent conditions lead to a stronger beach response to wave forcing. 
Metrics of wave disequilibrium used in these models include wave en
ergy (Yates et al., 2009) and the dimensionless fall velocity (Davidson 
et al., 2013; Splinter et al., 2014). 

When calibrated, reduced-complexity equilibrium shoreline models 
have been shown to successfully simulate wave-driven shoreline 
changes for many coastlines (Davidson et al., 2013; Ibaceta et al., 2020; 
Miller and Dean, 2004; Muir et al., 2020; Splinter et al., 2014; Robinet 
et al., 2017, 2018; Schepper et al., 2021; Tran and Barthélemy, 2020; 
Vitousek and Barnard, 2015; Vitousek et al., 2017). While full 
morphological models account for water level changes explicitly (Lesser 
et al., 2004; Roelvink et al., 2009), reduced complexity shoreline models 
generally do not take into account water level variations, and thus any 
shoreline movement affected by water level changes are effectively 
aliased into the wave forcing terms in the models. It is not surprising or 
even a shortcoming that water level effects are not considered in most 
reduced-complexity shoreline models, since to date applications have 
been restricted to ocean coasts on shorter timescales. On ocean coasts, as 
described earlier, water level fluctuations are dominated by 
high-frequency tidal variations, which at sub-daily timescales are not 
resolved with the typical daily simulation step used in these models. 

The modeling of water level effects on shoreline position has thus far 
been focused on two limiting timescales. At one end of the spectrum, the 
effects of rapid, short-term water level fluctuations on shoreline position 
such as tides or storm surge can be modeled as “passive” beach flooding 
or exposure, as outlined by Vitousek et al. (2017). In this passive 
flooding limit, water simply moves up or down the passive, unmoving 
beach face, and horizontal shoreline movement is reasonably assumed 
to be proportional to the beach slope at the water’s edge (typically 1/10 
or so). 

The opposite timescale limit is the long-term shoreline recession 
associated with sea level rise, which has traditionally been modeled with 
the Bruun Rule (Bruun, 1962). In this long-term limit, shoreline reces
sion is again assumed to be proportional to a beach slope, but in this case 
the effective beach slope dictating recession is the overall slope of the 
entire active profile, from the onshore berm to the offshore depth of 
closure (typically 1/90-1/800; these numbers are corresponding to the 
75 and 25 percentiles respectively presented by Athanasiou et al. 
(2019). The Bruun Rule effectively assumes that the recessed beach 
profile maintains equilibrium with the water level, and preserves the 
profile shape starting from the intersection point of the profile with the 
water level seaward. 

In related, recent work, we showed that the magnitude of the recent 
Lake Michigan beach response to the seasonal and interannual water 
level increases is somewhere between these two limits, with an effective 
recession slope of approximately 1/30 (Troy et al., 2021). Measurements 
of the geomorphic response along seven Lake Michigan beaches by 
Theuerkauf et al. (2019) revealed that the key variable that differenti
ated the geomorphic response of the beaches was the change in water 
levels. This finding suggests that the beach erosion process for the Great 
Lakes is not well-described by either limit or model, likely due to the 
magnitude and frequency of the water level fluctuations as described 
earlier, and the lack of equilibrium between changing water levels and 
the actively evolving beach profile over seasonal and interannual 
timescales. 

The objective of the present study is to develop and test a simplified 
shoreline model that successfully captures the effects of rapid, large 
seasonal and interannual water level changes on shoreline change, 
which we believe is an important lacking model feature that hinders the 
application of existing models to Great Lakes shorelines. Through 
analogy to how wave effects are modeled in existing shoreline models, 
the proposed model is based on the concept of “water level 

disequilibrium”, where low-frequency water level fluctuations enhance 
wave-driven shoreline changes. The model is tested on two shorelines 
along southern Lake Michigan that have recessed extensively between 
2013 and 2020 in response to high water levels, and compared to 
existing reduced-complexity models that do not model water level 
effects. 

2. Model development 

2.1. Model formulation 

The proposed “Great Lakes Shoreline Model” (GLSM) proposed here 
is similar in overall structure to the existing ShoreFor model (Splinter 
et al., 2014), with modifications to account for water level effects. The 
model formulation for the daily change in cross-shore shoreline position 
with time is 

dy
dt

=

(

F+
⏞⏟⏟⏞
(1)

+ r F−
⏞⏟⏟⏞
(2) )

+
Cpf

tan (α)
dS
dt

⏞̅̅̅̅̅̅ ⏟⏟̅̅̅̅̅̅ ⏞
(3)

+ b
⏞⏟⏟⏞
(4)

(1) 

Here dy
dt is the time rate of change of the shoreline position in the 

cross-shore direction, with dy
dt > 0 implying shoreline advancement, and 

dy
dt < 0 implying shoreline recession. Terms 1 and 2 represent wave 
driven shoreline advancement and retreat, respectively, with shoreline 
change being proportional to wave energy, modulated by wave and 
water level disequilibrium (described in detail below). The dimension
less constant r accounts for differences between accretion and the 
erosion response rates to wave forcing, following previous modeling 
(Davidson et al., 2013; Miller and Dean, 2004; Splinter et al., 2014; 
Yates et al., 2009). Term 3 in Equation (1) represents the effect of pas
sive flooding and exposure due to water level changes (dS/dt) on the 
shoreline position, where tan (α) represents the average cross-shore 
slope of the beach face at the waterline and Cpf is the passive flooding 
constant, a free dimensionless parameter, following Vitousek et al. 
(2017). This passive flooding term (Term 3) accounts for simple geo
metric inundation and exposure as the water level rises and falls and the 
shoreline advances and recedes, respectively. The constant Cpf is an O(1) 
constant introduced to account for the uncertainty associated with the 
spatial and temporal variability in beach foreshore slopes. The linear 
term b (Term 4) is introduced in the model to account for all other un
resolved long-term processes such as alongshore transport gradients, 
following previous work (Davidson et al., 2013; Vitousek et al., 2017). 

The broad formulation of the wave-driven shoreline change terms F+

(shoreline advancement) and F− (shoreline recession) is the same as the 
ShoreFor model, namely 

F =P0.5 ΔA
σΔA

(2) 

with F = F+ when ΔA is positive (advancement), and F = F− when Δ 
A is negative (recession). Here P is the deep water incident wave power 
estimated with linear wave theory: 

P=
1
16

ρgH2Cg (3)  

where H is the wave height, ρ is the water density, g is gravity, and Cg 
represents the group velocity. 

The term ΔA/σΔA is the normalized, dimensionless disequilibrium 
term in the model, and is calculated as 

ΔA=Aeq − A (4)  

Where A is the physical variable defining equilibrium, Aeq is its equi
librium value (typically taken as a weighted average of recent values 
over a defined timescale), and σΔA is the standard deviation of the whole 
timeseries of A, which captures the regular variability of the system. 
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The equilibrium value Aeq is calculated as a weighted average of the 
previous A factors over a duration of 2 φ days following the same 
weighting factors suggested by Splinter et al. (2014). 

Aeq =

∑2φ

i=1
Ai10− i/φ

∑2φ

i=1
10− i/φ

(5) 

Here i represents the number of days prior to the present time and φ 
represents the response factor for the modeled shoreline. 

Previous models, focused on wave disequilibrium as the primary 
variable that modulates wave-driven shoreline changes, have defined A 
with the dimensionless fall velocity: 

A = AH =
H

WT
(6)  

Where H is the wave height, W is a representative sediment fall velocity, 
and T is the wave period. The general interpretation of the dimension
less fall velocity is that high values are associated with erosive condi
tions, and lower values cause shoreline growth (Wright and Short, 
1984). With AH as the equilibrium variable in (4), wave-driven shoreline 
recession is enhanced by events with relatively large values of AH, 
relative to a weighted average of recent values Aeq over a time period 
2φH, i.e. the disequilibrium ΔA/σA. Conversely, low values of the 
dimensionless fall velocity, relative to the equilibrium (recent) values, 
cause shoreline advancement. 

To additionally account for enhanced shoreline changes resulting 

Fig. 2. Illustration of water level disequilibrium term. Shown are (a) Lake Michigan water levels, relative to long-term mean; (b) dimensionless water level AS and 
equilibrium water level Aeq calculated with φS = 183 days and 365 days; (c) resulting water level disequilibrium term (raw and smoothed) for φS = 10 days; (d) 
resulting water level disequilibrium term (raw and smoothed) for φS = 365 days. 
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from beach disequilibrium caused by sustained, appreciable water level 
changes, we introduce a water level disequilibrium variable AS: 

AS =
S
σS

(7) 

Here S is the instantaneous (daily average) water level relative to a 
long-term mean or datum, and σS is the standard deviation of S over the 
period of record. The equilibrium value of AS is taken as a weighted 
average of water level values (S) over a timescale 2φS that reflects the 
timescale required for the shoreline to respond to water level changes. 

An illustration of how the water level disequilibrium term functions 
is shown in Fig. 2. Two periods of longer-term water level changes are 
highlighted. For the falling water level period of the years 1997–2001, 
the equilibrium water level consistently exceeds the actual water level, 
leading to a positive disequilibrium term, Equation (4). This positive 
disequilibrium term for falling water levels then serves to enhance wave- 
driven shoreline advancement via Equation (2). The opposite is true for 
rising water levels (2013–2020), where the equilibrium water level is 
generally less than the actual (rising) water level, in turn leading to a 
negative disequilibrium term that will lead to wave-enhanced shoreline 
recession. 

We define the total disequilibrium as the sum of the wave and water 
level disequilibrium, as 

ΔA
σΔA

=CH
ΔAH

σΔAH

+ CS
ΔAS

σΔAS

(8) 

Here the weighting constants CH and CS are introduced in order to 
provide system-specific weightings for the relative and absolute 
importance of wave- and water level-driven disequilibrium in causing 
shoreline changes. With Cpf = 0 and CS = 0, the model reverts to the 
popular ShoreFor model (Splinter et al., 2014). 

2.2. Synthetic test cases 

To illustrate the behavior of the water level disequilibrium mecha
nism, two idealized, synthetic cases of water level and wave forcing 
were examined and solved numerically (“Case 1” and “Case 2”). For 
wave forcing, both cases are forced with seasonally-varying wave con
ditions that mimic the average wave variability seen in Lake Michigan 
with large waves in winter and smaller waves in summer. For water level 
forcing, Case 1 isolates the model response to low-frequency, interan
nual water level changes; Case 2 has seasonal variations in water level 

Fig. 3. Synthetic Case 1. Panel (a) shows wave height and water level forcing; Panel (b) shows the GLSM and ShoreFor model responses.  
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on top of the Case 1 interannual water level changes. The seasonally- 
varying Case 2 water levels are maximum in summer and minimum in 
winter, which means that they are phase shifted from the seasonal wave 
pattern by half of a year (this pattern is also the usual pattern in Lake 
Michigan). 

For Case 1, the wave height was varied sinusoidally over an annual 
cycle with largest wave heights in the fall and the winter and smallest 
wave heights in the spring and the summer (Fig. 3). The water level in 
Case 1 was taken to be constant for the first 5 years of the simulation, 
then linearly increased 2 m over a period of 10 years, followed by a 
constant high-water level for the remainder of the simulation. This water 
level increase mimics the recent observed low-frequency interannual 
cycle of water level increase in Lake Michigan from 2013 to 2020 
(Fig. 1). 

Because the purpose of the synthetic test cases was to highlight 
modeling behavior associated with the addition of the water level 
disequilibrium term (Equation (1)), the passive flooding (Term 3) was 
not used for the synthetic test cases (i.e. Term 3 was set to 0). For both 
cases, models’ parameters were selected to produce a magnitude of 
shoreline movement response roughly comparable to what has been 
observed in Lake Michigan for a good visual comparison between the 
two models (Table 1). The model was coded in MATLAB (MATLAB, 
2019) and solved with a direct Euler scheme with a daily timestep. The 
simplified model without passive flooding was also solved without the 
water level disequilibrium term, for which the simplified model reverts 
to the ShoreFor model as mentioned previously (Splinter et al., 2014). 

The simplified model responses to Case 1 are shown in Fig. 3, with 
and without the inclusion of the water level disequilibrium term. With 
no water level changes in the first 5 years of the simulation, both models 
produce the same lagged periodic response to the seasonally-varying 
wave heights. The simplified GLSM model with the water level 
disequilibrium term, however, produces shoreline retreat in response to 
the increase in the water levels. As expected, the baseline ShoreFor 
model responds to the seasonally-varying waves but not the interannual 
water level changes, since water level effects are not included in the 
model. 

For Case 2, the simplified GLSM and ShoreFor shoreline responses 
differ throughout the simulation period, including the period where the 
water level does not vary interannually (Fig. 4). The Case 2 ShoreFor 
response is identical to the Case 1 response. During the first five years of 
the simulation, both models produce a periodic shoreline response, but 
for Case 2 the two models are phase shifted relative to one another, since 
the simplified GLSM solution is additionally responding to the 
seasonally-varying water levels. This phase lag is particular to the model 
coefficients used in the simulations (Table 1). The GLSM is seen to again 
respond to the interannual water level fluctuations in a physically- 
realistic manner, similar to the Case 1 response. 

3. Model application 

3.1. Study area 

The main study location for this work is the Indiana coastline of Lake 
Michigan (USA; Fig. 5). Lake Michigan is the second largest Great Lake 
by volume and the third largest by area (Bockheim, 2020). Lake Mich
igan coasts are considered nontidal, but experience annual average 
water level fluctuations of ± 0.15 m due to seasonal variations in the 
hydrologic cycle. As discussed previously, Lake Michigan water levels 
exhibit large variations on a range of longer timescales (Cheng et al., 
2021; Hanrahan et al., 2009) (Fig. 1). The lake experiences the largest 
wind waves in the fall and winter (Mortimer, 2004), with maximum 
significant wave heights of 5–6 m and maximum wave periods of 12–13 
s (Feng et al., 2020; Melby et al., 2012). The dominant direction of 
sediment drift along the Indiana coastline is towards the southwest, with 
several large harbors acting as littoral barriers that separate the coast
line into distinct coastal cells (Fig. 5). 

This study focused on two Indiana Lake Michigan shoreline sites: (1) 
Jeorse Park Beach (1.6 km long); and (2) Marquette Park Beach and 
West Beach (hereafter jointly referred to as West Beach; 5.6 km long). 
The shorelines examined here are primarily comprised of fine sandy 
beaches backed by vegetated dunes, with shoreline use being primarily 
recreational. The median sediment sizes for the dry portions of Jeorse 
and West Beaches are 0.26 and 0.33 mm respectively, which was 
determined using a standard sieve analysis carried out on collected 
samples. The foreshore beach slopes of Jeorse and West Beach were 
estimated as 1/16 and 1/19, respectively, using 2012 USACE/NOAA 
topo-bathymetric LiDAR data. While the two beaches are separated by 
only 13 km, waves at Jeorse Park Beach are largely diminished relative 
to West Beach due to the presence of the large, 4 km long Indiana Harbor 
that blocks waves from the northwest. 

In related recent work, we developed an automated procedure to 
extract shoreline positions and discern shoreline changes from newly 
available commercial high-resolution multispectral satellite images 
(Abdelhady et al., 2022). This algorithm was applied in the present work 
to construct a high temporal and spatial resolution timeseries for the 
shoreline positions for the two study locations, using the Planetscope 
and RapidEye satellites (Figs. 6 and 7) (Planetscope). Planetscope im
agery is available from early 2016 to present, and RapidEye imagery is 
available from 2009 to 2019. The average revisit time for the Planet
scope and RapidEye satellites are 1 and 5.5 days respectively. The 
extracted time series for the two shorelines presented in this study are 
shown in Figs. 6 and 7. In all 171 shoreline positions for West Beach 
were extracted for the period 2009 to 2019, and 264 shoreline positions 
for Jeorse Park Beach were extracted for the period 2009 to 2019. Gaps 
present in the time series are due to the presence of cloud cover and 
shore ice. The estimated uncertainty in the shoreline positions is esti
mated to be equal to half the pixel size of the images (Abdelhady et al., 
2022) (±1.5 m for the Planetscope images and ±2.5 m for the Rapideye 
images). 

In addition to the high-frequency shoreline position time series 
derived from the Planetscope and RapidEye satellite imagery, available 
older aerial and satellite imagery was utilized to determine discrete 
historical shoreline positions for the beaches for the period 1987–2008, 
for longer model runs described in the Discussion section. 

Hourly wave descriptors near both shorelines were extracted from 
the U.S. Wave Information Study (WIS) simulation from stations 94005 
and 94001 for Jeorse Park Beach and West Beach respectively, for the 
period 1979–2019 (U.S. Army Corps of Engineers, 2022). These stations 
are located approximately 6.9 km and 6.8 km from the beaches, in 11 m 
and 17 m depth water, respectively (Fig. 5). 

3.2. Model calibration 

The optimization of the free parameters was done using an optimi

Table 1 
Model coefficients used for the synthetic case studies.  

Parameters Case 1 Case 2 

GLSM 

CH (m1.5/day− 1/W− 0.5) 0.00050 0.0006 
CS (m1.5/day− 1/W− 0.5) 0.00015 0.0011 
φS (days) 72 72 
φH (days) 72 72 
b (m/day) 0.00364 − 0.0030 
Cpf 0 0 
r 0.10 0.10 

ShoreFor 

C (m1.5/day− 1/W− 0.5) 0.00050 0.00050 
b (m/day) 0.00364 0.00364 
φ (days) 72 72 
r 0.10 0.10  
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zation algorithm that included least squares optimization and a genetic 
algorithm. A direct least squares optimization for equation (1) was not 
possible due to the presence of the CH, CS, φS and φH parameters that are 
embedded into the model factors and need to be constrained. Thus, a 
genetic algorithm (Katoch et al., 2021) was used as an outer loop to 
change these four parameters while in each loop the optimum values for 
the Cpf and b are determined using the least squares optimization. This 
technique was found to be faster and more robust than using the genetic 
algorithm for all the parameters. The genetic algorithm was chosen due 
to its ability to deal efficiently with the mixed integer optimization 
problems (Deep et al., 2009). 

The model was calibrated on the data available from 2009 to the end 
of 2017. The two years 2018–2019 were left for the model to forecast (i. 
e. validate). A daily timestep was used for model calculations. The 
maximum hourly wave height for each day and the corresponding peak 
wave period were used for calculations of the wave energy and the 
dimensionless fall velocity, while the average daily water levels were 
used for the water levels term. 

The ShoreFor model proposed by Splinter et al. (2014) was used as a 
reference model for comparison. This model was selected for compari
son because the GLSM is an extension to that model, and because the 

ShoreFor model does not account for the influence of water levels on 
shoreline positions and thus provides an interesting baseline case 
against which the proposed model can be compared. The proposed 
GLSM simulations were also compared to solutions produced from a 
shoreline model containing only the passive flooding term (Term 3 in 
Equation (1)). The calibration of the comparison models was done using 
the least squares optimization as suggested by Davidson et al. (2013) 
and Splinter et al. (2014). 

3.3. Model skill evaluation and comparison 

The proposed GLSM simulations were compared to solutions pro
duced from the ShoreFor model equations, with two metrics used to 
assess the performance of the model and to compare the model skill with 
existing models. The first metric was the root mean square error (RMSE) 
between the model and the observations. 

The second metric was the Brier Skill Score (BSS) (Sutherland and 
Soulsby, 2003). The advantage of this metric is that it allows the com
parison of performance between two models. The form of the BSS used 
in this study is: 

Fig. 4. Synthetic Case 2. Panel (a) shows wave height and water level forcing; Panel (b) shows the GLSM and ShoreFor modeled shoreline position responses.  
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BSS= 1 −

∑
(y − ym)

2

∑
(y − yr)

2 (9) 

Positive values for the BSS indicate that the proposed model (ym) is 
an improvement over the reference model (yr), with values exceeding 0, 
0.3, 0.6, 0.8 considered as poor, fair, good, and excellent improvement, 
respectively, according to (Davidson et al., 2013; Splinter et al., 2014). 
Negative values indicate that the proposed model does not improve over 
the reference model. 

4. Results 

4.1. Jeorse Park beach 

Simulation results for Jeorse Park Beach are shown in Fig. 8, with 
optimized calibration parameters provided in Table 2. When calibrated, 
both models are able to simulate the observed shoreline changes with 
very good accuracy. The full GLSM has root mean square errors in the 
simulated shoreline position of 1.85 m and 1.48 m for the hindcast and 
forecast periods (i.e. calibration and validation), respectively, with 
corresponding ShoreFor values of 2.74 m and 2.48 m for the same pe
riods. Both models are able to capture the lower-frequency interannual 
variability in the shoreline position correctly for the relatively constant 
shoreline position during the period of constant water level 
(2009–2013), and producing a retreating shoreline during the period of 
rising water level (2013–2019). The character of the two solutions dif
fers with respect to the high frequency of the shoreline response; the 
GLSM is seen to have larger fluctuations in the shoreline position on 
daily to weekly timescales. 

When evaluated for improvement, the GLSM showed good 
improvement over a linear trend, and the improvement provided by the 
ShoreFor model over the linear trend model was evaluated to be poor 
(Table 3). Relative to one another, the GLSM was evaluated to have good 
improvement over the ShoreFor model for the Jeorse Park Beach 
simulation, which would be expected given that the latter model has no 
knowledge of the water level changes. 

The optimized calibration coefficients for the two models provide 
insight into the different mechanisms by which both models capture the 
shoreline position (Table 2). The low wave disequilibrium coefficient 
value of CH = 6.22x10 − 8 for the GLSM indicates that the water level 
disequilibrium term is the main factor modulating wave forcing, and 
that wave disequilibrium plays a negligible role in setting the shoreline 
position. When investigated further, it was found that the wave forcing 
term, although primarily modulated by water level disequilibrium, 
contributed to only a small amount of the shoreline changes simulated at 
Jeorse Park Beach, while the passive flooding term was found to be the 
primary mechanism responsible for the simulated changes. Thus, in 
spite of the potential complexity afforded by the water level disequi
librium mechanism that was introduced into the GLSM, the shoreline 
model effectively reverted to the simple passive flooding model (Term 3) 
introduced by Vitousek et al. (2017) for this beach. While not expected, 
this behavior makes sense in hindsight, because of the very low amount 
of wave energy that the beach experiences, due to its location south of 
the massive Indiana Harbor that effectively blocks waves from the west 
and most importantly the north, which is the direction of maximum 
fetch. It should be noted that the WIS wave station used for the Jeorse 
Park Beach modeling is likely not representative of the beach wave 
climate, due to its offshore location where the station lies outside of the 

Fig. 5. Study area at southern Lake Michigan (satellite imagery courtesy of Esri, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, 
AeroGRID, IGN, and the GIS User Community). 
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influence of the large harbor, as seen in Fig. 5. Thus, it seems reasonable 
that the primary mechanism causing shoreline changes at Jeorse Park 
Beach is simply passive flooding and exposure. 

4.2. West Beach 

For the West Beach simulations, both models show reasonable 
agreement with the low-frequency, interannual shoreline response, but 
the GLSM is seen to produce much more accurate shoreline positions on 
finer, sub-annual timescales. The RMSE values for West Beach simula
tions using the GLSM are 2.37 m and 2.35 m, for the hindcast and 
forecast periods (i.e. calibration and validation) respectively, and the 
optimized ShoreFor simulation results have respective RMSE values of 
4.41 m and 4.43 m (Table 4). Model improvement metrics are rated 
excellent and good for the GLSM in comparison to linear trends, but only 
fair and poor for the ShoreFor model. When compared against each 
other, the GLSM shows good improvement over the ShoreFor model for 
both the calibration period (2009–2017) as well as the forecast period 
(2018–2019) (Table 4 and Fig. 9). 

For the West Beach simulations, calibrated model parameters reveal 
that the water level term plays an important role in capturing the 

shoreline changes, which explains why the GLSM outperforms the 
ShoreFor model for this beach (Table 2). For the GLSM, the water level 
disequilibrium coefficient CS is four orders of magnitude greater than 
the wave disequilibrium coefficient CH, showing that the wave 
disequilibrium mechanism that typically drives ocean shoreline changes 
is not active at the West Beach site either (Table 2). 

5. Discussion 

The synthetic case studies and field applications of the proposed 
shoreline model (GLSM) highlight the model’s ability to simulate 
shoreline changes enhanced and driven by the large, low-frequency 
water level fluctuations seen in the Great Lakes. The character of these 
water level fluctuations is unique to the Great Lakes and their effect on 
shoreline changes is not captured in existing reduced-complexity 
shoreline models. The GLSM introduced herein simulates water level 
effects on shoreline position via two mechanisms: (1) passive flooding 
(Term 3 in Equation (1)); and (2) the modulation of wave forcing via a 
water level disequilibrium mechanism (Equations (7) and (8)). Differ
ences in the wave climate at the two beaches lead to differences in the 
relative importance of each mechanism, and the relative improvement 

Fig. 6. (a) Average shoreline movement for Jeorse Park Beach, as inferred from satellite imagery (positive indicates advancement); (b) water level from 2009 to 2020 
extracted from NOAA Gauge 9087044; (c) wave heights from WIS station 94005. 
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provided by the new model. 
At Jeorse Park Beach, which is strongly sheltered from wave energy, 

the passive flooding term in the model is able to capture most of the 
shoreline position variability over the period 2009–2019. The ShoreFor 
Model is also able to simulate the shoreline position well for Jeorse Park 
Beach, due to the aliasing of the passive flooding water level effect into 
the linear term in the model (Term 4 in Equation (1)). Overall, the GLSM 
shows a significant improvement over the linear trend and the ShoreFor 
models for Jeorse Beach. 

At West Beach, which experiences the full power of Lake Michigan’s 
large north-south fetch, the calibrated GLSM provides more substantial 
improvement in the shoreline position estimation, because there both 
passive flooding and water level disequilibrium are important mecha
nisms causing shoreline change. For this location, the GLSM provides 
more substantial improvement over the linear and ShoreFor models. The 
ShoreFor model is still able to simulate the shoreline position reasonably 
well for West Beach, with less than 5 m error, which again is presumably 
due to the aliasing of water level effects into the model’s linear term b. 

For the simulations shown of the 10-year periods, it may not appear 
that the increased complexity afforded by the new model is entirely 
warranted, given that the simulations without the water level terms still 

provide reasonable (<5 m RMSE) accuracy. However, as a first point, it 
could be noted that Great Lakes shoreline models should have a higher 
absolute shoreline position accuracy requirement, due to the much 
smaller beach widths and overall shoreline movements relative to ocean 
beaches. 

More importantly, with no mechanism to account for water level 
effects, the ShoreFor model is succeeding in the two test cases by 
absorbing the effects of the changing water levels into the wave forcing 
and linear terms in the model. For example, the optimized linear term 
(b) in the ShoreFor model simulation is one order of magnitude larger 
than the corresponding GLSM values for both beaches. Additionally, for 
both locations, the optimized ShoreFor wave forcing coefficients (C) are 
negative, which is not physically plausible (the optimization is not 
constrained). Again, this is not a shortcoming of the ocean-focused 
ShoreFor model, because the oceans do not face the magnitude and 
duration of the large Great Lakes water level fluctuations, it is merely 
instructive. While the two-year (2018–2019) validation period used in 
the simulations presented herein do provide some independent valida
tion of the calibrated model, this period has a very similar water level 
trend to the calibration period (2009–2017), and therefore the linear 
shoreline trend term can effectively predict the future (2018–2019). 

Fig. 7. (a) Average shoreline movement for West Beach, as inferred from satellite imagery; (b) water level from 2009 to 2020 extracted from NOAA Gauge 9087044; 
(c) wave heights from WIS station 94001. 
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Fig. 8. Jeorse Park Beach model application results. The period 2009–2017 is used for model calibration, and the period 2018–2019 is used for model validation and 
assessment. Panel (a) shows the results of the GLSM and the passive flooding with Cpf = 1 while panel (b) shows the results of the ShoreFor model. 

Table 2 
Calibrated coefficients of the models used for Jeorse Park Beach and West Beach 
case studies.  

Parameters Jeorse Park Beach West Beach 

GLSM 

CH (m1.5/day− 1/W− 0.5) 6.22 × 10− 8 5.47 × 10− 8 

CS (m1.5/day− 1/W− 0.5) 2.50 × 10− 4 3.53 × 10− 4 

φS (days) 132 278 
φH (days) 5 5 
b (m/day) − 0.0005 0.0021 
Cpf 0.623 0.95 
r 0.6319 1.073 

ShoreFor 

C (m1.5/day− 1/W− 0.5) − 0.0019 − 0.0041 
b (m/day) − 0.0055 − 0.014 
φ (days) 1,570 2,000 
r 0.1387 0.1325 

Passive Flooding 

Cpf 1.08 2.18  

Table 3 
Skill metrics for GLSM and ShoreFor mode for Jeorse Park Beach. Values without 
brackets are for the hindcast (calibration) period, and values in brackets 
correspond to the forecast period.  

Skill Metrics GLSM ShoreFor Passive 
Flooding 

RMSE (m) 1.85 (1.5) 2.72 (2.47) 1.92 (1.48) 
BSS (improvement 

over linear trend) 
0.66, good (0.78, 
good) 

0.27, poor (0.40, fair) 0.64, good 
(0.78, 
good) 

BSS (improvement 
over ShoreFor) 

0.53, good (0.63, 
good) 

N/A 0.50, good 
(0.64, 
good) 

BSS (improvement 
over Passive 
Flooding) 

0.067, poor 
(− 0.0208, no 
improvement) 

− 1.01, no 
improvement 
(− 1.76, no 
improvement) 

N/A  
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To try and test the model over a much wider range of water level and 
wave conditions, a hindcast was performed for West Beach with the 
models for the period 1980–2019, using data from the 2009–2017 
period for calibration. To supplement the high-resolution satellite im
agery used to calibrate and validate the model between 2009 and 2019, 

several high-resolution aerial and satellite images from 1987 to 2009 
were collected for West Beach and the corresponding shoreline positions 
were manually calculated and added as points in a longer time series. 
Long-term model runs were then conducted using the GLSM, passive 
flooding (only), and ShoreFor models. 

The longer-term simulation results are shown in Fig. 10, with com
parison statistics provided in Table 5. The GLSM is seen to simulate the 
shoreline position variability for the entire 40-year period, with excel
lent improvement over the other models. The GLSM model error is 5.6 m 
over the 40-year period, during which the total shoreline excursion was 
nearly 65 m. The ShoreFor model is seen to diverge strongly from the 
observations over longer timescales, which is due to the fact that the 
model was calibrated with a period of decreasing water levels 
(2009–2018) during which the shoreline recessed continuously, and has 
no knowledge of the water level or how shoreline response is impacted 
by changing water levels. 

The passive flooding model produces a long-term simulation that is 
more constrained, with better accuracy than ShoreFor, but the passive 
flooding model is fated to generate only one shoreline position for a 
given water level, and lacks the ability to replicate wave-enhanced 

Table 4 
Skill metrics for GLSM and ShoreFor mode for West Beach. Values without 
brackets are for the hindcast (calibration) period, and values in brackets 
correspond to the forecast period.   

GLSM ShoreFor Passive 
Flooding 

RMSE (m) 2.37 (2.35) 4.41 (4.43) 3.06 (2.69) 
BSS (improvement 

over linear trend) 
0.84, 
excellent 
(0.74, good) 

0.46, fair (0.078, poor) 0.73, good 
(0.66, good) 

BSS (improvement 
over ShoreFor) 

0.71, good 
(0.72, good) 

N/A 0.51, good 
(0.61, good) 

BSS (improvement 
over Passive 
Flooding) 

0.40, fair 
(0.24, poor) 

− 1.055, no 
improvement (− 1.59, 
no improvement) 

N/A  

Fig. 9. West Park Beach model application results. The period 2009–2017 is used for model calibration, and the period 2018–2019 is used for model validation and 
assessment. Panel (a) shows the results of the GLSM and the passive flooding with Cpf = 1 while panel (b) shows the results of the ShoreFor model. 
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shoreline change or temporal asymmetry in the shoreline position be
tween falling and raising water levels. 

Taken in sum, the comparison simulations for the nearly 40-year 
period suggest that the proposed GLSM, when calibrated, is able to 
successfully capture water level-enhanced shoreline change, which is 
arguably the primary mechanism causing shoreline changes for the 
Great Lakes beaches examined herein. 

As is the case for all calibrated, reduced complexity models, care 
must be taken in interpreting results of good agreement between the 
model simulation and observation. It should be noted that with the in
clusion of the water level disequilibrium and passive flooding terms in 
the GLSM, three new model parameters are introduced (CS,Cpf , and φS). 
These additional constants provide additional degrees of freedom 
through which the model is calibrated. However, the non-physical 
calibration parameters for the ShoreFor model when trying to simu
late water level effects suggest that additional complexity is needed. 

Calibrated simulation parameters show greatly different shoreline 
response timescales for the wave and water level disequilibrium mech
anisms (φH and φS respectively; Table 2). The calibrated wave disequi
librium timescale (φH = 5 days for both beaches) was found to be much 
shorter than the water level disequilibrium timescales (φS = 132 and 
278 days). To understand these differences, it is important to note that in 
the limit of the disequilibrium timescale becoming zero, the mechanism 
shuts down entirely and as there is no disequilibrium to enhance wave- 

driven shoreline change (e.g. A = Aeq in Equation (4)). Thus, the low 
wave disequilibrium timescales of 5 days suggests that wave disequi
librium plays a negligible role relative to water level disequilibrium for 
both beaches. The lower value of water level disequilibrium timescale 
for Jeorse Beach relative to West Beach may be due to the increased 
importance of the passive flooding mechanism for Jeorse Beach (see 
Fig. 8); for passive flooding, the timescale of shoreline response is 
essentially instantaneous. 

The low calibration values of the wave disequilibrium timescales 
(φH) and wave forcing coefficients (CH) relative to the corresponding 
water level disequilibrium coefficients (φS and CS) suggest that it is 
water level disequilibrium, not wave disequilibrium, that is most 
important for wave-driven shoreline changes at these two beaches for 
the periods investigated. 

Differences exist in the depths and shore proximities of the two wave 
forcing stations used to drive the model for the beaches. These differ
ences make it difficult to extrapolate the model coefficients from this 
first study beyond these sites, and comparisons of coefficients between 
the two sites should be carried out with caution. The wave data used in 
the two case studies are extracted from WIS stations 94001 and 94005, 
which have different depths of 17 and 11 m respectively. While most of 
the waves at these stations are deep-water waves due to the relatively 
low wave periods in Lake Michigan, some of the larger waves are in
termediate waves and are affected by the water depth. In any reduced- 
complexity shoreline model driven by offshore waves, wave trans
formation effects are site-specific and aliased into model coefficients, so 
this effect is unavoidable. Additionally, the direct use of station 94005 
for the Jeorse Beach simulations does not account for the sheltering 
effect from Indiana Harbor (Fig. 5) on the wave heights at Jeorse beach. 
This sheltering effect was absorbed in the model parameters during the 
calibration process. Obtaining comparable model parameters for 
different sites would require accounting for the sheltering effect in the 
input wave data instead of the model parameters. In that regard, more 
future work needs to be done to address these challenges to standardize 
wave forcing between different sites, which will in turn allow for the 
extrapolation and generalization of model coefficients that can be 
transferred to other sites. 

Fig. 10. Comparison between calibrated GLSM, Shorefor, and Passive Flooding Models for the longer time series from 1980 to 2020. The period 2009–2017 was used 
for model calibration, with hindcast and forecast simulations performed outside this time period (1980–2009 and 2017–2019, respectively). The gray-shaded area 
represents the forecasting period. 

Table 5 
Skill metrics for GLSM and ShoreFor models for West Beach for the longer-term 
simulations from 1980 to 2009.   

GLSM ShoreFor Passive 
flooding 

RMSE (m) 5.55 89.03 13.88 
BSS (improvement over 

linear trend) 
0.99, 
excellent 

− 2.05, no 
improvement 

0.92, 
excellent 

BSS (improvement over 
ShoreFor) 

0.99, 
excellent 

N/A 0.975, 
excellent 

BSS (improvement over 
Passive Flooding) 

0.84, 
excellent 

− 39.58, no 
improvement 

N/A  

H.U. Abdelhady and C.D. Troy                                                                                                                                                                                                              



Coastal Engineering 179 (2023) 104249

14

It should be noted that the model accuracy for the two case studies 
(Tables 3 and 4), shoreline measurements and seasonal variability for 
the shoreline position all have similar values of approximately 5 m. 
Therefore, it is difficult to use the current shoreline measurement data to 
infer the seasonal variability in the shoreline position and to validate the 
seasonal variability shown by the model simulations using the available 
data. In essence, on short timescales over which the shoreline movement 
is small, it is hard to attribute the differences between the model 
simulation and the measurement to the lack of model skill. Even though 
the shoreline positions inferred herein are leveraging the most accurate 
and high-resolution satellite imagery available at present, future work 
could involve model testing with even more accurate shoreline position 
datasets, derived by in-situ imaging or field surveys. 

6. Conclusions 

In this paper, a new shoreline evolution model, the Great Lakes 
Shoreline Model (GLSM), was developed and tested. Motivated by recent 
large water level fluctuations in the Great Lakes, this model was 
developed in response to the need for a reduced-complexity shoreline 
model that can successfully account for the influence of large seasonal 
and interannual water level fluctuations on shoreline changes. Building 
on the structure of existing reduced-complexity shoreline models such as 
ShoreFor (Splinter et al., 2014) and CoSMoS-COAST (Vitousek et al., 
2017), the proposed model assumes that wave-forced shoreline changes 
are modulated by the summed water level and wave disequilibrium, 
with additional terms for passive flooding/exposure and unresolved 
processes. Simple case studies demonstrate the ability of the model to 
generate shoreline changes consistent with seasonal and interannual 
patterns of waves and water levels as seen in the Great Lakes. 

The model was applied to two sandy sites in southern Lake Michigan 
with different wave characteristics. Calibration and validation shoreline 
position time series were obtained from high resolution commercial 
satellite images, Planetscope and RapidEye. The GLSM was compared to 
the ShoreFor model, which is not formulated to account for water level 
effects, as well as a simple passive flooding/exposure model for which 
shoreline change is proportional to the beach face slope. For a nine-year 
period during which the water level consistently rose, the GLSM model 
hindcasts and forecasts showed improvement over both models, with 
more substantial improvement over both models for the beach with 
greater wave forcing (West Beach). 

The application of the models to a Lake Michigan beach over a nearly 
forty-year period of highly-variable water levels and shoreline position 
highlights the true potential improvement provided by the proposed 
model. The GLSM was able to simulate the shoreline position with RMSE 
of less than 5 m, whereas the comparison models showed extensive long- 
term drift due to the aliasing of water level effects into other terms. 

More applications of the model are needed to better understand and 
improve the model for a wider range of coastal conditions. The model 
formulation raises numerous questions about shoreline responses to 
coastal hydrodynamic processes, and the investigation of these ques
tions may provide insight to coastal responses to sea level rise. To date, 
reduced complexity shoreline models attempting to account for sea level 
rise operate on two extremes of the temporal spectrum – either short- 
term passive flooding, or long-term equilibration via the Bruun Rule. 
The model described herein affords a tunable, intermediate timescale 
(φS) that can potentially bridge the gap between these two extremes, 
which may allow more accurate intermediate predictions of the effects 
of sea level rise for ocean coasts. 

Finally, it is hoped that this model paves the road for the improved 
predication of shoreline positions in the Great Lakes, which motivated 
the model development, in turn aiding in the design of coastal measures 
along Great Lakes shorelines to better buffer the large interannual water 
level fluctuations that have recently caused widespread damage to 
shoreline communities. 
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