Breaking shoaling internal waves

Municipal Separate Storm Sewer (MS4) Training: Scoping and Development

Very Heavy RainfallIn this project, we are developing training materials to help operators of municipal storm sewer systems (MS4) reach compliance with IDEM’s new MS4 permit. This permit requires additional training for agency staff, contractors, and engineers. Training materials that we are developing include handouts, videos, and assessments that are readily accessible by MS4 permit agencies.


Christopher B. Burke Engineering

Regulation of plankton and nutrient dynamics by profundal quagga mussels in Lake Michigan: a one-dimensional model

Invasive dreissenid mussels have altered plankton abundance and nutrient cycling in the Great Lakes. In this study, a 1-D hydrodynamic-biogeochemical coupled model is developed to investigate their effects at a mid-depth offshore site in Lake Michigan. Model simulation shows that water surface temperature and vertical thermal structure can be well reproduced. Driven by the simulated vertical mixing, the biological model solves the transport and transformation of nutrients, plankton and detritus in the water column. Mussel grazing and excretion are added at the bottom boundary. The biological model predicts a notable decline of phytoplankton biomass and considerable increase of dissolved phosphorus (DP) in the entire water column at the end of spring. However, the reduction of phytoplankton and the increase of DP are limited to the bottom 20 m in summer as a result of the strong stratification. Model results also show that mussels can maximize particle delivery to the benthos, as the modeled benthic diffusive flux of particulate phosphorus exceeds the passive settling rate by 4.2× on average. Model simulation over a 10-month period indicates that profundal mussels have the potential to significantly change the distribution of energy and nutrients in the water column, even in a deep and stratified environment.

Asynchrony in the inter-annual recruitment of lake whitefish Coregonus clupeaformis in the Great Lakes region

Spatially separated fish populations may display synchrony in annual recruitment if the factors that drive recruitment success, particularly abiotic factors such as temperature, are synchronised across broad spatial scales. We examined inter-annual variation in recruitment among lake whitefish (Coregonus clupeaformis) populations in lakes Huron, Michigan and Superior using fishery-dependent and -independent data from 1971 to 2014. Relative year-class strength (RYCS) was calculated from catch-curve residuals for each year class across multiple sampling years. Pairwise comparison of RYCS among datasets revealed no significant associations either within or between lakes, suggesting that recruitment of lake whitefish is spatially asynchronous. There was no consistent correlation between pairwise agreement and the distance between datasets, and models to estimate the spatial scale of recruitment synchrony did not fit well to these data. This suggests that inter-annual recruitment variation of lake whitefish is asynchronous across broad spatial scales in the Great Lakes. While our method primarily evaluated year-to-year recruitment variation, it is plausible that recruitment of lake whitefish varies at coarser temporal scales (e.g. decadal). Nonetheless, our findings differ from research on some other Coregonus species and suggest that local biotic or density-dependent factors may contribute strongly to lake whitefish recruitment rather than inter-annual variability in broad-scale abiotic factors.

Recruitment dynchrony of Yellow Perch (Perca flavescens, Percidae) in the Great Lakes Region, 1966-2008

Population-level reproductive success (recruitment) of many fish populations is characterized by high inter-annual variation and related to annual variation in key environmental factors (e.g., climate). When such environmental factors are annually correlated across broad spatial scales, spatially separated populations may display recruitment synchrony (i.e., the Moran effect). We investigated inter-annual (1966–2008) variation in yellow perch (Perca flavescens, Percidae) recruitment using 16 datasets describing populations located in four of the five Laurentian Great Lakes (Erie, Huron, Michigan, and Ontario) and Lake St. Clair. We indexed relative year class strength using catch-curve residuals for each year-class across 2–4 years and compared relative year-class strength among sampling locations. Results indicate that perch recruitment is positively synchronized across the region. In addition, the spatial scale of this synchrony appears to be broader than previous estimates for both yellow perch and freshwater fish in general. To investigate potential factors influencing relative year-class strength, we related year-class strength to regional indices of annual climatic conditions (spring-summer air temperature, winter air temperature, and spring precipitation) using data from 14 weather stations across the Great Lakes region. We found that mean spring-summer temperature is significantly positively related to recruitment success among Great Lakes yellow perch populations.

Testing for synchrony in recruitment among four Lake Michigan fish species

In the Great Lakes region, multiple fish species display intraspecific spatial synchrony in recruitment success, with interannual climate variation hypothesized as the most likely driver. In Lake Michigan, we evaluated whether climatic or other physical variables could also induce spatial synchrony across multiple species, including bloater (Coregonus hoyi), rainbow smelt (Osmerus mordax), yellow perch (Perca flavescens), and alewife (Alosa pseudoharengus). The residuals from stock–recruitment relationships revealed yellow perch recruitment to be correlated with recruitment of both rainbow smelt (r = 0.37) and alewife (r = 0.36). Across all four species, higher than expected recruitment occurred in 5 years between 1978 and 1987 and then switched to lower than expected recruitment in 5 years between 1996 and 2004. Generalized additive models revealed warmer spring and summer water temperatures and lower wind speeds corresponded to higher than expected recruitment for the nearshore-spawning species, and overall variance explained ranged from 14% (yellow perch) to 61% (alewife). For all species but rainbow smelt, higher recruitment also occurred in extremely high or low years of the North Atlantic Oscillation index. Future development of indices that describe the physical Great Lakes environment could improve understanding of how climate can synchronize fish populations within and across species.

Species‐specific effects of subdaily temperature fluctuations on consumption, growth and stress responses in two physiologically similar fish species.

Fluctuations in water temperature can have important physiological consequences for fishes. Effects of daily thermal cycles are well studied and can be beneficial, increasing prey consumption and growth rates when mean and maximum temperatures of the fluctuations are at or below the species’ optimum temperature. While less studied, subdaily temperature fluctuations are also common in many aquatic habitats and can be caused by both natural and anthropogenic processes. We performed laboratory experiments to examine how two fish species (yellow perch, Perca flavescens, and walleye, Sander vitreus) with similar thermal preferences respond to chronic exposure to subdaily temperature variability. We selected temperature treatments that reflected observed thermal variation after examining water temperature data from multiple aquatic systems. We then separately exposed yellow perch and walleye to a stable 23 °C treatment and 12-h cycles of 23 ± 2 °C or 23 ± 4 °C for 45 days. Adult yellow perch exposed to fluctuations of 23 ± 4 °C over 12 h expressed higher consumption, growth and food conversion efficiency than fish experiencing stable 23 °C. Temperature fluctuations, though, resulted in mortalities and the development of skin ulcers in yellow perch that did not occur under stable temperatures. In contrast, the same 12-h temperature fluctuations did not result in mortalities or stress responses in juvenile walleye. Moreover, unlike yellow perch, growth rates of walleye were lower under 12-h temperature fluctuations compared with the stable 23 °C treatment. Our results indicate that species with similar thermal preferences can respond differently to the same subdaily temperature fluctuations.

Diets and growth potential of early stage larval yellow perch and alewife in a nearshore region of southeastern Lake Michigan

Transition from endogenous to exogenous feeding is thought to be a critical period for many fish larvae, when prey availability (type, size, and density) and ambient physical conditions (e.g., temperature, water clarity) can strongly influence survival. In Lake Michigan, two important fish species, yellow perch (Perca flavescens) and alewife (Alosa pseudoharengus), hatch and, presumably, begin exogenously feeding in the nearshore zone, an area characterized by short-term variation in environmental conditions. During 2010-2011, we examined environmental conditions and spatial and temporal distributions of larval yellow perch, larval alewife, and their potential prey in a nearshore region of southeastern Lake Michigan. To consider implications of environmental conditions on larval fish habitat quality, we quantified diet contents of young larval yellow perch and alewife and modeled bioenergetic growth rate potential (an index of habitat quality) under observed and predicted prey consumption scenarios. As expected, in this dynamic nearshore zone temperatures, light levels, zooplankton prey availability, and resulting growth rate potential were highly variable. Many larval fish digestive tracts were empty, suggesting that starvation may affect cohort survival. Among early-feeding larval fish, relatively small diet items were common, with larval alewives consuming diatoms and larval yellow perch consuming veligers of invasive dreissenid mussels. Though the mechanisms underlying such prey consumption and the consequences of ingesting these prey items remain largely unexplored, our results suggest dreissenid mussel veligers present early-feeding larvae with a relatively abundant prey source that may partially offset the apparent low consumption of other prey sources within Lake Michigan’s nearshore region.

Thermal habitat quality of aquatic organisms near power plant discharges: potential exacerbating effects of climate warming

Water temperature strongly affects aquatic ectotherms, as even slight temperature changes can have dramatic effects on physiological rates. Water bodies receiving industrial thermal discharges can undergo dramatic spatial and temporal changes in water temperature. To quantify effects on aquatic ectotherms, thermal habitat quality (bioenergetic growth rate potential; GRP) for zebra mussel, Dreissena polymorpha (Pallas), rusty crayfish, Orconectes rusticus (Girard), walleye, Sander vitreus (Mitchill) and smallmouth bass, Micropterus dolomieu (Lacepède) was estimated near two power plant thermal discharges on the Ohio River, USA, from 2010 to 2012 using bioenergetics models. These results were then compared with GRP under increased base temperatures representing climate warming. Growth rate potential for all species was low near the discharges during summer and highest in winter, with increasing prey consumption minimising the negative effects of increased temperatures. In their immediate vicinity, thermal discharges had a more adverse effect on GRP than plausible climate warming but primarily affected GRP over a small spatial area, particularly within 400 m downstream from the power plants. Examining thermal habitat suitability will become increasingly important as rising energy demand and climate change collectively affect aquatic organisms and their habitats.