Engineering faculty on writing: What they think and what they want

Writing has been identified as an important skill for engineers, and while faculty generally agree that writing should be included in the engineering classroom, there are many barriers that may discourage faculty to do so. This survey explored how faculty are including writing in their classes, what barriers they face, and also asks faculty what resources they would like so that the inclusion of writing could be more realistic and feasible.

In terms of their approaches to incorporating writing in their courses, a majority of respondents reported sometimes or frequently assigning writing in the following types of assignments: project documentation, written explanations of homework, and short-answer questions on tests and quizzes. A majority of respondents also reported frequent use of grading rubrics for writing, as well as specifying the audiences for whom students should target their writing.

Respondents identified their top challenges to including writing in their courses, including large enrollments, lack of time, and lack of teaching assistants competent to assess writing. To address these challenges, the most favored suggestion was having teaching assistants trained to assess writing, followed by expanding the availability of writing resources for faculty and students. Additionally, the issue of student preparation was brought up on numerous occasions; faculty stated that previous negative experiences with student writing hindered faculty from including writing assignments in their courses.

In a perfect world, all faculty would have teaching assistants that were trained in teaching engineering writing. However, other more realistic resources include providing rubrics and sample work on an accessible and easy to use website. This paper reports on the faculty survey about writing and also how it relates the larger project that includes providing these important resources to faculty.

Writing to learn engineering: Identifying effective techniques for the integration of written communication into engineering classes and curricula (NSF RIGEE project)

The inclusion of writing-based exercises in technical courses has multiple learning benefits to students. Writing exercises not only serve to improve students’ written communication skills (i.e., “learn to write”), but can also be leveraged to develop critical thinking skills and promote deeper understanding of technical concepts (i.e., “write to learn”). Nevertheless, while writing-intensive assignments are relatively common in upper-level technical courses, especially in the form of laboratory and project reports, writing is often absent in the larger, required core courses that are taken by large numbers of engineering students. This is a missed opportunity to both enhance student learning of technical content as well as missed chance for students to have more writing practice. This NSF RIGEE project aims to investigate, support, and promote the inclusion of writing in technical courses, particularly introductory and core courses. Analysis of an engineering instructor survey carried out as part of the project revealed concerns about assessment and feedback on students’ written work. Additionally, writing instructors were interested in the creation of guides designed to aid instructors in the creation and tailoring of writing prompts for use in their existing technical courses. This paper introduces preliminary resources we have created in response to these stated needs, in order to help instructors develop, implement, and assess writing assignments in their courses. Current resources include a decision tree to help instructors create writing assignments within their classrooms and assessment rubrics that can easily be adapted to specific writing assignment needs. Resources will continue to be developed during the remainder of the project, culminating in a writing website geared towards instructors.

Something to write home(work) about: An analysis of writing exercises in fluid mechanics textbooks

Something to Write Home(work) About: An Analysis of Writing Exercises in Fluid Mechanics TextbooksAs assessments of learning outcomes are increasingly emphasized through accreditationrequirements (e.g., via ABET) and other quality assurance initiatives, written communication isone area that engineering instructors often find challenging to incorporate and assess. This isparticularly true in large core courses at the sophomore and junior levels. In this project, ananalysis of writing-based problems in fluid mechanics textbooks attempts to locate theavailability of activities that would allow students to practice writing, to learn through writing,and to use writing to relate course content to broader applications and contexts.This study is part of a larger ongoing project to understand and expand the incorporation ofwriting in large-lecture engineering courses, including investigation of faculty perspectives andtextbook assignments and assessments. This snapshot of writing-across-engineering will theninform efforts to create a range of writing activities (and assessment methods), mapped to ABETlearning outcomes, that instructors can incorporate in large engineering classes. Our objective isto examine widely-used textbooks in thermodynamics, materials, circuits, statics, and dynamics.In the preliminary analysis reported in this paper, we study problem sets from five popular fluidmechanics textbooks to find problems requiring more than merely numerical or calculatedanswers. As these writing-based problems are identified, we will categorize them in terms of thetype of prompt they represent, such as asking for explanation of a solution, application of aconcept to real-world examples, or problem-solving that requires description of processes.Once the number and types of writing problems in these textbooks has been analyzed andorganized, we will further explore how well the texts support actually using these exercises inclass. While writing-based prompts might be present, for example, instructors might not havethe resources, expertise, and/or support needed to incorporate them in their classes. Morespecifically, examination of solution sets and instructor’s guides will reveal how much thetextbooks equip instructors to assign and then assess the writing prompts that do exist. Finally,the extant writing assignments will be mapped to ABET learning outcomes to see how promptscan potentially be used to address key learning outcomes, e.g., in relation to the studentoutcomes in ABET Criterion 3.The result of this analysis will be an understanding of how well popular fluid mechanicstextbook assignments guide students in writing, and how well the textbooks equip instructors tomake use of those assignments. We will use this data to identify areas in which more writingassignments and assessment training would be useful for the teaching of engineering. This paperwill likely be of particular interest to faculty and staff interested in using writing to support avariety of technical, professional, and global learning outcomes in core engineering courses.

Writing to learn engineering: Identifying effective fechniques for the integration of written communication into engineering classes and curricula (NSF RIGEE project)

The inclusion of writing-based exercises in technical courses has multiple learning benefits to students. Writing exercises not only serve to improve students’ written communication skills (i.e., “learn to write”), but can also be leveraged to develop critical thinking skills and promote deeper understanding of technical concepts (i.e., “write to learn”). Nevertheless, while writing-intensive assignments are relatively common in upper-level technical courses, especially in the form of laboratory and project reports, writing is often absent in the larger, required core courses that are taken by large numbers of engineering students. This is a missed opportunity to both enhance student learning of technical content as well as missed chance for students to have more writing practice. This NSF RIGEE project aims to investigate, support, and promote the inclusion of writing in technical courses, particularly introductory and core courses. Analysis of an engineering instructor survey carried out as part of the project revealed concerns about assessment and feedback on students’ written work. Additionally, writing instructors were interested in the creation of guides designed to aid instructors in the creation and tailoring of writing prompts for use in their existing technical courses. This paper introduces preliminary resources we have created in response to these stated needs, in order to help instructors develop, implement, and assess writing assignments in their courses. Current resources include a decision tree to help instructors create writing assignments within their classrooms and assessment rubrics that can easily be adapted to specific writing assignment needs. Resources will continue to be developed during the remainder of the project, culminating in a writing website geared towards instructors.

Adventures in paragraph writing: The development and refinement of scalable and effective writing exercises for large-enrollment engineering courses

Adventures in paragraph writing: the development and refinement of scalable and effective writing exercises for large enrollment engineering coursesThe ability to communicate effectively is a highly desirable attribute for today’s graduatingengineers. Additionally, the inclusion of communication components in technical courses hasbeen shown to enhance learning of technical content and can be leveraged to satisfy non-technical learning outcomes. However, the incorporation of such components in undergraduateengineering curricula remains challenging due to resource limitations, credit hour crunches, andother issues. This paper presents the design considerations and preliminary results from ourongoing work to create an effective, transferrable, low-overhead approach to paragraph writingexercises suitable for inclusion in any large engineering course. Key considerations in thedevelopment of these exercises include: identification of the motivations and learning outcomesfor each exercise; development and tailoring of writing prompts (questions) appropriate for theseoutcomes; and the development and implementation of an assessment and feedback strategy,including resource-efficient grading rubrics and techniques.Results are reported from the application of the paragraph writing exercise in a large civilengineering undergraduate fluid mechanics course (120 students; approximately 15assignments). A primary focus of this first application centered on two key components thatmust be refined in order for the exercise to be effective and transferrable: (1) the selection ofwriting prompts, and (2) assessment and feedback. Analysis of student paragraphs highlights theimportance of the writing prompts in the success of the exercise, indicating that specific wordchoice, question focus, and supplemental instruction greatly affected the level of writing studentssubmitted. Some writing prompts were selected to address and enhance technical content in thecourse, while other writing prompts were developed to broaden student awareness of engineeringin societal, environmental, and global contexts. In addition to developing productive writingprompts, the assessment and feedback strategies were evaluated using student surveys andfeedback. While minimal marking and holistic rubric assessment methods proved effective froma grading resource standpoint, students were frustrated by the lack of feedback associated withthese techniques and uncomfortable with the holistic grading rubric. Data from student surveyspoint to the importance of giving meaningful feedback to students, and providing them withopportunities to revise their written submissions. Student surveys also highlighted an unforeseenobstacle to the exercise: student resistance to writing in technical courses. We provide severalsuggestions for overcoming student resistance, as well as improved assessment and feedbackstrategies that better meet student needs while still not over-burdening instructors and teachingassistants.